lunes, 2 de enero de 2017

14 avances de la medicina en el siglo XXI

El genoma humano 


Corría el año 2003 cuando un consorcio internacional formado por científicos de seis países descifraba, dos años antes de lo previsto, la secuencia completa (99,99%) del llamado libro de la vida: el genoma humano. Era la culminación del Proyecto Genoma Humano, dotado con 280 millones de dólares de presupuesto, que se había creado en 1990 para tal objetivo. En la larga cadena con forma de hélice que tiene el ADN se ocultan los miles de genes que contienen las instrucciones para el funcionamiento de un ser humano.
La secuenciación del genoma ha significado avances muy importantes en el terreno del conocimiento. Aunque todavía no se han logrado predecir, diagnosticar y tratar muchas enfermedades, la medicina se ha transformado como nunca gracias a este hallazgo.

Reprogramación celular 


La revista Science ya señalaba la reprogramación celular como el hallazgo estrella de la investigación de 2008. Desarrollada en 2006 en ratones, la técnica posibilita, entre otras cosas, que una célula de la piel o de un cabello se convierta en una neurona o en cualquier otro tipo celular de los 220 que componen nuestro organismo.
Eso significa que gracias a la reprogramación celular se puede borrar la memoria del desarrollo de una célula, convirtiéndola en un tipo totalmente diferente después de haberla devuelto a su estado embrionario. El padre de esta técnica, el japonés Shinya Yamanaka, recibió en 2012, juntamente con el científico británico John B. Gurdon, el nobel de medicina por sus investigaciones pioneras en clonación y células madre.

El ADN basura 


Gracias a las investigaciones del proyecto ENCODE (la investigación de mayor envergadura en el campo de la genómica en la que participan varios biomédicos españoles) en 2012 se descubrió que el llamado ADN basura es mucho más útil de lo que se pensaba. Y es que, en realidad, éste es esencial para que los genes humanos funcionen ya que regula su actividad. El hallazgo se presentó de manera simultánea en tres revistas científicas: la británica Nature, y las estadounidenses Genome Research yGenome Biology.

Sangre artificial


Investigadores de la Universidad de Pensilvania han construido desde cero una proteína capaz de hacer lo mismo que ciertas proteínas del cuerpo humano: transportar y entregar oxígeno; lo que puede constituir un avance útil en el desarrollo de sangre artificial.
Durante años, los científicos han intentado crear componentes de sangre artificial, con la esperanza de que dicho avance médico resolviese los problemas que presenta la sangre donada, como son la contaminación, el almacenamiento limitado y la escasez; y facilitase las transfusiones de sangre en la guerra y las urgencias.
Los investigadores utilizaron tres aminoácidos para fabricar una estructura proteica en columnas de cuatro hélices y pusieron, en su interior, una estructura más pequeña llamada hemo, una gran molécula plana que constituye la parte activa de la hemoglobina.
El hemo tiene un átomo de hierro en el centro, que es al que se enlaza el oxígeno.

Fábricas de ADN


Según un artículo publicado el 9 de abril de 2007 en Technology Review, la fabricación a medida barata de ADN podría revolucionar la biología molecular.
Codon Devices, una empresa de biotecnología de Cambridge, Massachussets, pretende mejorar la eficiencia de la ingeniería genética. Para ello, fabrica hebras de ADN a medida, evitando a los científicos el trabajo de tener que unir complicadas piezas de ADN a la antigua.

Avances en neurotecnología


Según un artículo publicado el 12 de julio de 2006 por Reuters, gracias a un nuevo sensor cerebral un hombre de 25 años que sufre parálisis en las cuatro extremidades desde hace tres años ha sido capaz de mover el cursor de un ordenador, abrir su correo electrónico y manejar un dispositivo robotizado simplemente con pensar en hacerlo.
Él ha sido el primero de los cuatro pacientes con daños en la médula espinal, distrofia muscular, apoplejía o enfermedad de las neuronas motoras en probar el nuevo sistema desarrollado por Cyberkinetics Neurotechnology Systems Inc., de Massachusetts.
Los científicos implantaron un diminuto chip de silicio con 100 electrodos en una zona del cerebro responsable del movimiento. La actividad de las células se grabó y se envió a un ordenador que tradujo los comandos y permitió al paciente mover y dirigir el dispositivo externo.

Vacuna contra el cáncer


Según un artículo publicado el 26 de mayo de 2006 en la edición impresa de la revista New Scientist, la simple inhalación de una vacuna podría proteger a las mujeres del cáncer cervical. 
Las pruebas preliminares indican que esta vacuna que se inhala puede desencadenar una respuesta inmunológica similar a la observada con la vacuna inyectable que pronto se aprobará en EEUU y Europa.
El spray aerosol consiste en partículas derivadas del exterior del VPH-16 (virus del papiloma humano 16), uno de los serotipos del virus responsable de la mayoría de los casos de cáncer cervical. Al ser inhalada, estimula la producción de anticuerpos contra el virus.
Con la vacuna inhalable tan sólo son necesarias dos dosis, con una separación de dos semanas entre ellas, mientras que la inyectable requiere tres dosis a lo largo de seis meses.

Diminutos sensores implantables que controlan el estado de salud


Se trata de sensores multifunción del tamaño de una mota de polvo, que pueden detectar cualquier cosa, desde la presión sanguínea hasta compuestos tóxicos.
Según un artículo de Tecnology Review del 16 de junio de 2006, este dispositivo basado en la tecnología de memoria flash ( la que utilizan algunas cámaras digitales, dispositivos electrónicos portátiles y teléfonos móviles), se podría llegar a utilizar para una gran variedad de aplicaciones, entre las que se incluyen mejores pruebas de detección de drogas o dopaje, un seguimiento continuado del estado de salud de órganos y vasos sanguíneos e incluso la detección de sustancias químicas en el ambiente.
El desarrollo comercial de estos sensores inventados por Edwin Kan, profesor de ingeniería informática y eléctrica de la Universidad de Cornell, lo está llevando a cabo Transonic Systems, en Ithaca, Nueva York.

Cultivo de células cerebrales


Según un artículo en The Guardian Science, dentro de poco será posible cultivar células del cerebro humano en platos Petri. La nueva técnica promete nuevos tratamientos contra enfermedades como Parkinson y epilepsia, porque podría crear suministros sin límite de células humanas.
Según declaraciones recogidas en el artículo del director de la investigación, Prof. Scheffler, un neurocientífico de la Universidad de Florida, “es como una línea de producción de una fábrica. Podemos sacar estas células y luego congelarlas hasta que las necesitemos. Luego las descongelamos y fabricamos una tonelada de neuronas nuevos.”
Scheffler recogió células precursoras de ratones y les aplicó productos químicos para lograr la diferenciación de las mismas. Durante todo el proceso, su equipo tomó imágenes de las células cada pocos minutos.
Los científicos confirmaron que el desarrollo de las células precursoras del cerebro es parecido a la forma en la que las células sanguíneas se crean a partir de los células precursoras de la médula ósea, lo que en su día llevó a avances en el proceso de implantes de médula ósea.

Avances en nanomedicina


Según el director de la nueva revista, Dr. Chiming Wei de la Escuela de Medicina de la Universidad Johns Hopkins, La nanomedicina ha avanzado de forma muy rápida en años recientes, con aplicaciones prometedoras en campos como el reconocimiento de células cancerígenas, etiquetación de células madre y control y reparación de daños en ADN.

Nanoagujas 


Según un artículo de Nanotech.org, unos científicos del Research Institute for Cell Engineering del Instituto Nacional de Ciencia y Tecnología Avanzadas de Japón y la Universidad de Agricultura y Tecnología de Tokyo han utilizado unas nanoagujas unidas a un microscopio de fuerza atómica para penetrar el núcleo de células vivas.
Los investigadores creen que se podrá utilizar estas nanoagujas para repartir moléculas tales como ácidos nucleicos, proteínas u otros sustancias químicas al núcleo, o incluso para realizar cirugía celular.
 Las puntas de aguja AFM no se podían utilizar como agujas al no ser suficientemente largas para las células que medían más de 3 micrones (milésima parte de un mm.), así que los científicos crearon sus propias nanoagujas.

Al principio intentaron aplicar sondas de nanotubos de carbón, pero hubo un problema con la dureza mecánica. Finalmente utilizaron una punta AFM grabado de silicona. Lograron desarrollar unas nanoagujas cuyo diámetro mide entre 200 y 200 nanometros con una longitud de 6-8 micrones con una forma cilíndrica que permite mayor posibilidad de inserción en la célula.
Los científicos hicieron pruebas de unas nanoagujas basadas en una sonda AFM con una punta tetraedral sobre unas células embriónicas de riñón con una proteína roja fluorescente. Los científicos pintaron las agujas con una tinta fluorescente y estudiaron su posición en la célula mediante exploración láser con microscopio confocal.

Las células medían unos 10 a 20 micrones de alto. Las nanoagujas penetraron tanto la membrana celular como la membrana nuclear y llegaron hasta el núcleo de las células. Según los científicos, esta es la primera vez que se logra llegar al núcleo de una célula viva tan pequeña con un grado de posicionamiento tan alto.

Cirugía Virtual


Estudiantes y profesores de biología o medicina, o simplemente curiosos a los que les interesa seguir de cerca avances en la medicina y la enseñanza, disponen de una nueva herramienta, gratis, para practicar la cirugía virtual sobre la rodilla de un paciente virtual. Solo se requiere un ordenador, conexión a Internet y buenos conocimientos de inglés.

Nanotecnología en la Medicina


Un equipo de investigación de la Universidad de Purdue ha demostrado que los nanotubos de carbón podrían mejorar aplicaciones de prótesis ortopédicas.
El equipo de investigadores ha demostrado a través de una serie de experimentos en platos petri que las células óseas se adhieren mejor a aquellos materiales cuyos bultitos en la superficie son más pequeños que los bultos que se encuentran en la superficie de los materiales que habitualmente se utilizan para fabricar prótesis. Además, al estar más pequeños los bultos, se estimula el crecimiento de más tejido óseo, lo que resulta imprescindible para lograr una correcta adhesión del prótesis implantado.

Sensores magnéticos para atacar virus


Científicos del Scientists del Argonne National Laboratory han desarrollado un nuevo tipo de sensor magnético capaz de detectar a biomoléculas. El aparato se basa en la medición de la relajación browniana de nanopartículas magnéticas conectadas a biomoléculas. Esta técnica podría ofrecer aplicaciones para el campo de la medicina y la detección de bacteria y virus en el medioambiente.
Seok-Hwan Chung y su equipo miden el cambio en la susceptibilidad magnética de las nanopartículas en un campo magnético alternante.

La susceptibilidad depende del tiempo necesario para que los giros magnéticos de las nanopartículas se relajen a su alineación original después de eliminar el campo magnético.
Existen dos tipos de relajación magnética: en la relajación tipo Browniano las partículas giran en solución debido a su energía termal, mientras que en la relajación de Néel los movimientos internos dipolos de las partículas giran.

La relajación de Néel normalmente ocurre en las partículas menores de 10 nanometros, mientras que la relajación Browniana predomina en las partículas más grandes. Las técnicas sensoras que miden tiempos de relajación de Néel ya existen, pero no son capaces de distinguir entre objetivos distintos con propiedades similares.

No hay comentarios:

Publicar un comentario